Федеральное государственное бюджетное образовательное учреждение высшего образования «Нижегородская государственная медицинская академия»

Министерства здравоохранения Российской Фелерации

РАБОЧАЯ ПРОГРАММА

Дисциплина:

Термодинамика

химического

равновесия различных систем

Направление подготовки: 33.05.01 - Фармация

Квалификация выпускника: специалист

Факультет: фармацевтический

Форма обучения: очная

Рабочая программа разработана в соответствии с ФГОС ВО по специальности 33.05.01фармация, утвержденным приказом Министерства образования и науки Российской Федерации №1037 от 11 августа 2016 года

Составители рабочей программы: Кондрашина О.В., к.х.н., доцент

11x 08 20/ f.

Горденов А.С., д.х.н., заведующий кафедрой, профессор

Программа рассмотрена и од Заведующий кафедрой, д.х.н., профессор	добрена на заседании кафедры (протокол № , дата)
«11» 08 20/4.	
СОГЛАСОВАНО Председатель цикловой мето д.б.н., доцент, профессор	одической комиссии по естественно – научным дисциплинам (Малиновская С.Л.)
«11 » 08 20/6.	
СОГЛАСОВАНО Начальник УМУ, д.м.н., профессор	Потемина Т.Е.

1. Цель и задачи освоения дисциплины:

Цель освоения дисциплины: Способность к абстрактному мышлению, анализу синтезу (ОК-1);

Готовность к использованию основных физико-химических, математических и иных естественнонаучных понятий и методов решения профессиональных задач (ОПК-7).

Задачи дисциплины:

Знать	Основные начала термодинамики, термохимии, включая роль и значение термодинамических потенциалов; Кинетика химических реакций; катализ; химическое равновесие, способы расчета констант равновесия; фазовые равновесия. Основы физико-химического анализа; способы расчета сроков годности, периода полупревращения лекарственных веществ; физико-химические основы поверхностных явлений и дисперсных явлений; влияние различных факторов на деструкцию лекарственных веществ; возможности использования поверхностных явлений для приготовления лекарственных форм; основы фазовых и физических состояний полимеров, возможности их изменений с целью использования в медицине, фармации; основные свойства высокомолекулярных веществ; факторы, влияющие на застудневание, набухание, тиксотропию, синерезис, коацервацию, вязкость, периодические реакции в механизме приготовления лекарственных форм.
Уметь	самостоятельно работать с учебной и справочной литературой по физической и коллоидной химии; пользоваться основными приемами и методами физикохимических измерений; рассчитывать константы равновесия, равновесные концентрации реагентов, равновесный выход продуктов реакции, степень превращения исходных веществ; смещать равновесия в растворах; собирать простейшие установки для проведения лабораторных исследований; табулировать экспериментальные данные, графически представлять их, интерполировать, экстраполировать для нахождения искомых величин; измерять физико-химические параметры растворов;

	проводить элементарную статистическую обработку экспериментальных данных в физико-химических экспериментах; обрабатывать, анализировать и обобщать результаты физико-химических наблюдений и измерений; применять полученные знания при изучении аналитической, фармацевтической химии, фармакогнозии, фармакологии, токсикологии, технологии лекарств.
Владеть	методами статистической обработки экспериментальных результатов физико-химических исследований; методикой оценки погрешностей физико-химических измерений; методами колориметрии, потенциометрии, рефрактометрии, хроматографии навыками интерпретации рассчитанных значений термодинамических функций с целью прогнозирования возможности осуществления и направления протекания химических процессов; техникой проведения основных физико-химических экспериментов; техникой экспериментального определения рН растворов при помощи индикаторов и приборов; физико-химическими методами анализа веществ, образующих истинные растворы и дисперсные системы; навыками приготовления, оценкой качества, способами повышения стабильности дисперсных систем; навыками проведения научных исследований для установления взаимосвязи физико-химических свойств и фармакологической активности.

Место дисциплины в структуре ОПОП ВО организации.

- 2.1. Дисциплина относится к учебному математическому, естественнонаучному и медико-биологическому циклу (вариативная часть)
- 2.2. Для изучения дисциплины необходимы знания и умения формируемые предшествующими дисциплинами:

Общая и неорганическая химия

Знания: основные законы термодинамики, кинетики и химического равновесия. Растворы и их свойства. Электролиты. Теории кислот и оснований

Умения: определять направление протекания химических реакции по ТД величинам. Определять состояние растворов кислот, оснований и солей.

Математика

Знания: Теоретические основы элементарной и высшей математики, необходимые для выполнения математических вычислений, применяемых в органической химии и биотехнологии.

Умения: Выполнять математические вычисления, необходимые для проведения экспериментальных лабораторных работ по органической химии и биотехнологии.

Навыки: Владеть методами статистической обработки экспериментальных результатов физико-химических исследований; методикой оценки погрешностей физико-химических измерений.

Физика

Знания: Теоретические основы современных физических методов исследования веществ; принципы работы физических приборов, применяемых в фармации.

Умения: Определять физические характеристики лекарственных средств, в том числе: вязкость, показатель преломления, спектры поглощения, массспектры, определять концентрацию веществ в растворах методами фотоэлектрокалориметрии, спектрофотометрии, рефрактометрии, поляриметрии; использовать компьютер для сохранения, систематизации и обработки фармацевтической информации; самостоятельно работать с учебной и научной литературой для решения учебных и практических задач, оптимально вести поиск необходимой информации.

Навыки: Работа с физическими приборами: вискозиметрами, поляриметрами, фотоэлектрокалориметрами, спектрофотометрами, рефрактометрами, микроскопами; работа на персональном компьютере; самостоятельн ой работы с учебной и научной литературы для решения учебных и практических задач и для написания рефератов по фармацевтической тематике.

2.3. Изучение дисциплины необходимо для знаний, умений и навыков, формируемых последующими дисциплинами

Разделы дисциплины и междисциплинарной связи с обеспечиваемыми (последующими) дисциплинами

NoNo	Название обеспечиваемых	№№ разделов данной
n/n	(последующих) дисциплин	дисциплины, необходимых для
		изучения обеспечиваемых
		(последующих) дисциплин
1	Аналитическая химия	2
2	Органическая химия	2
3	Основы экологии и	1, 2
	охраны природы	
4	Фармацевтическая химия	1, 2
6	Биологическая химия	2
7	Фармакология	2
9	Фармацевтическая технология	1, 2

3. Требования к результатам освоения дисциплины.

Изучение дисциплины направлено на формирование у обучающихся следующих общекультурных и общепрофессиональных компетенций:

		Содержани	В результате изучения дист	циплины	
№	Код	e	обучающиеся должны:		
,	компет	компетенц ии	Знать	Ononomina	
П/П	енции	(или ее части)	Уметь	Оценочные	
			Владеть	средства	

ОК-1 Способнос 1.Контроль ные работы ОПКть к Основные начала темам ПО 7 термодинамики, термохимии, абстрактно му 2.Тесты включая роль И значение мышлению (промежут термодинамических , анализу, потенциалов; очные синтезу. Кинетика химических Готовность к реакций; катализ; химическое итоговые) использова нию равновесие, способы расчета 3.Рефераты основных констант равновесия; фазовые физикохимически 4. Проверка равновесия. X, подготовки физико-химического Основы математич еских к занятиям способы анализа; расчета и иных (выполнен сроков годности, периода естественн ие полупревращения домашнего лекарственных веществ; задания) физико-химические основы поверхностных явлений дисперсных явлений; влияние факторов различных на лекарственных деструкцию веществ; возможности использования

онаучных поверхностных явлений ДЛЯ приготовления лекарственных понятий и форм; методов основы фазовых и физических при состояний полимеров, возможности решении изменений целью профессио использования В медицине, нальных свойства фармации; основные задач высокомолекулярных веществ; факторы, влияющие на застудневание, набухание, тиксотропию, синерезис, коацервацию, вязкость, периодические реакции В

механизме приготовления лекарственных форм. самостоятельно работать с учебной справочной литературой физической и коллоидной химии; пользоваться основными приемами методами физико-химических измерений; рассчитывать константы равновесия, равновесные концентрации реагентов, равновесный выход продуктов реакции, степень превращения исходных веществ; смещать равновесия в растворах; собирать простейшие установки лабораторных проведения исследований; табулировать экспериментальные данные, графически представлять их, интерполировать, экстраполировать для нахождения искомых величин; измерять физико-химические параметры растворов; проводить элементарную обработку статистическую экспериментальных данных физико-химических обрабатывать, экспериментах; анализировать обобщать результаты физикохимических наблюдений и

измерений; применять полученные знания при изучении аналитической, фармацевтической химии, фармакогнозии, фармакологии, токсикологии, технологии лекарств.

методами статистической обработки экспериментальных результатов физико-химических

исследований; методикой оценки погрешностей физико-химических измерений; методами колориметрии, потенциометрии, рефрактометрии, хроматографии навыками интерпретации рассчитанных значений термодинамических функций прогнозирования целью осуществления возможности направления протекания химических процессов; техникой проведения основных физикохимических экспериментов; экспериментального техникой определения рН растворов помощи индикаторов и приборов; физико-химическими методами анализа веществ, образующих истинные растворы и дисперсные системы; навыками приготовления, оценкой способами качества, стабильности повышения дисперсных систем; навыками проведения научных исследований ДЛЯ установления взаимосвязи физико-химических свойств фармакологической активности.

4. Разделы дисциплины и компетенции, которые формируются при их изучении:

Код компетенции – ОК-1, ОПК-7

№ № n/n	Название раздела дисциплины	Содержание раздела
1	Термодинамичес кие свойства поверхностного слоя	1. 1Термодинамика поверхностного слоя. Поверхностная энергия Гиббса и поверхностное натяжение. Методы определения поверхностного натяжения. Краевой угол смачивания. Зависимость поверхностного натяжения от температуры. Связь поверхностной энергии Гиббса и поверхностной энтальпии. Энтальпия смачивания и коэффициент гидрофильности.
2	Термодинамика адсорбционных процессов	 2.1 Термодинамика многокомпонентных систем с учетом поверхностной энергии. Адсорбция на границе раздела фаз. Поверхностно-активные и поверхностно-неактивные вещества. Изотерма поверхностного натяжения. Уравнение Шишковского. Поверхностная активность. Правило Дюкло-Траубе. 2.2. Молекулярные механизмы адсорбции. Ориентация молекул в поверхностном слое. Определение площади, занимаемой молекулой поверхностно-активного вещества в насыщенном адсорбционном слое, и максимальной длинны молекулы ПАВ. 2.3. Термодинамический анализ адсорбции. Избыточная адсорбция Гиббса. Уравнение изотермы адсорбции Гиббса. Измерение адсорбции на границах раздела твердое тело – газ и твердое тело – жидкость. Факторы, влияющие на адсорбцию газов и растворенных веществ. Мономолекулярная адсорбция, уравнение изотермы адсорбции Ленгмюра, Фрейндлиха. Полимолекулярная адсорбция. Капиллярная конденсация, абсорбция, хемосорбция.

2.4. Адсорбция электролитов. Неспецифическая
(эквивалентная) адсорбция ионов. Избирательная
адсорбция ионов. Правило Панета – Фаянса.
Ионообменная адсорбция. Иониты и их
классификация. Обменная емкость. Применение
ионитов в фармации.
2.5. Хроматография (М.С. Цвет). Классификация
хроматографических методов по технике
выполнения и по механизму процесса.
Гельфильтрация. Применение хроматографии в
фармации.

5. Распределение трудоемкости дисциплины.

5.1. Распределение трудоемкости дисциплины и видов учебной работы по семестрам:

Вид учебной работы	Трудоемкость			
	объем в зачетных единицах (ЗЕ)	объем академических часах (АЧ) 3 семестр	В	
Аудиторная работа, в том числе	1.33	22		
Лекции (Л)	0.9	6		
Практические занятия (ПЗ)	0.94	16		
Самостоятельная работа студента (СРС)	0.66	50		
ИТОГО	2	72		

5.2. Разделы дисциплины, виды учебной работы и формы текущего контроля:

No	№	Наименование	Вид	цы у	чебной	работы	Оценочные
п/	семе	раздела	(B AY)				средства
П	стра	дисциплины					
			Л	П3	CPC	всего	

1.	3	Термодинамичес	4	8	25	31.2	1. Тематические
		кие свойства поверхностного слоя					контрольные работы; 2. Промежуточное
2.	2	Термодинамика адсорбционных процессов	2	8	25	40.8	тестирование. 3. Тематические коллоквиумы
		ИТОГО	6	16	50	72	

Л- лекции

ПЗ – практические занятия

СРС – самостоятельная работа студента

5.3. Распределение лекций по семестрам:

№ п/п	Наименование тем лекций	Объем в АЧ
		Семестр 3
1.	Термодинамика химического равновесия. Виды химического равновесия.	1
2.	Термодинамика многокомпонентных систем с учетом поверхностной энергии.	1
3.	Термодинамический анализ адсорбции.	1
4.	Капиллярная конденсация. Адсорбция электролитов.	1
5.	Термодинамика мицеллообразования. KKM. Солюбилизация.	1
6.	Термодинамика растворов ВМС.	1
7.	Термодинамика поверхностного слоя.	

5.5. Распределение тем практических занятий по семестрам:

No	Наименование тем практических занятий	Объем в АЧ
Π/Π		семестр
1.	Поверхностные явления	1.8
2.	Поверхностное натяжение	1.8
3.	Поверхностная активность	1.8
4.	Смачивание	1.8
5.	Влияние ПАВ на смачивание	1.8
6.	Когезия и адгезия.	1.8

7.	Контрольная работа №1 «Термодинамические свойства	1.8
	поверхностного слоя»	
8.	Виды адсорбции	1.8
9.	Фундаментальное адсорбционное уравнение Гиббса	1.8
10.	Мономолекулярная адсорбция	1.8
11.	Полимолекулярная адсорбция	1.8
12.	Хемосорбця	1.8
14.	Изучение адсорбции на границ раздела жидкость	1.8
	– газ.	
15.	Изучение адсорбции на границ раздела жидкость –	1.8
	твердая фаза	
16.	Адсорбция газов	1.8
17.	Адсорбция электролитов	1.8
18.	Хроматография	1.8
19.	Контрольная работа №2 «Адсорбция»	1.8

5.6. Распределение самостоятельной работы студента (СРС) по видам и семестрам:

No	Наименование вида СРС	Объем в АЧ	
п/п		семестр	семестр
1.	Работа с лекционным материалом	5	
2.	Написание рефератов по заданным проблемам	5	
3.	Выполнение домашнего задания к занятию	5	
4.	Изучение материала, вынесенного на	5	
	самостоятельную проработку.		
5.	Подготовка к лабораторным занятиям	10	
6.	Подготовка к контрольным работам	10	
7.	Подготовка к зачету	10	
	ИТОГО (всего - 50 АЧ)		

6. Оценочные средства для контроля успеваемости и результатов освоения дисциплины.

6.1. Формы текущего контроля и промежуточной аттестации виды оценочных средств:

				Оценочные средства		
$N_{\underline{0}}$	№	Формы	Наименование		кол-во	кол-во
Π/	семе	контроля	раздела дисциплины	виды	вопросо	независим
П	стра	контроли	раздела днециплины	Биды	ВВ	ых
					задании	вариантов
1	2	3	4	5	6	7
1.	3	Контрол	Термодинамические	КР	3	12
		Ь	свойства			
		усвоения	поверхностного слоя			
		темы				
2.	3	Контрол	Термодинамика	К	4	12
		Ь	адсорбционных			
		усвоения	процессов			
		темы				

6.2. Примеры оценочных средств:

1.Контрольная работа №1 «Термодинамические свойства поверхностного слоя»

Вариант 1

- 1. Что называется адгезией и смачиванием? Какие параметры применяют для их количественной характеристики?
- 2. Как определить константы уравнения Ленгмюра? Какие характеристики молекулы можно получить зная эти константы?
- 3. Определите адсорбцию капроновой кислоты на границе раздела водный раствор- воздух при концентрации равной 0,015 кмоль/м³ по зависимости поверхностного натяжения водных растворов ее от концентрации при 0^{0} C:

$\sigma \times 10^3$, H/M	65,83	60,05	53,00	48,11
С, кмоль/мз	0,005	0,01	0,02	0,03

4. Рассчитайте работу адгезии ртути к стеклу при 298 K, если краевой угол смачивания равен 134⁰.

Вариант 2

- 1. Как связаны между собой адгезия и смачиваемость?
- 2. Почему адсорбцию на твердой поверхности предпочтительнее описывать уравнением Френдлиха, чем уравнением Ленгмюра.

- 3. Предельная адсорбция N_2 на TiO_2 при T=75 К составляет $37,9 \times 10^{-2}$ моль/кг. Рассчитайте удельную поверхность адсорбента, если площадь занимаемая одной молекулой азота на поверхности равна 0,15 нм².
- 4. Вычислите при каком давлении паров воды заполняются стеклянные капилляры радиусом 10^{-8} м при температуре 20^{0} C.
- 2. *Контрольная работа №2 «*Термодинамика адсорбционных процессов»

Вариант 5

- 1. Как вычислить полную поверхностную энергию?
- 2. Что такое критическая концентрация мицеллообразования?
- 3. Дана зависимость поверхностного натяжения от концентрации пропионовой кислоты при 20^{0} C:

$\sigma \times 10^3$, H/M	65,60	60,00	45,66	38,75
C, кмоль/м ³	0,1	0,238	0,952	2,0
Определите адс	орбцию прі	и концентр	ации 1,0 в	c моль/ m^3 .

1. Вычислите работу когезии тетрахлорида углерода при 25°C.

Вариант 6

- 1. Что такое «поверхностная активность»? Какие вещества называются поверхностно-активными?
- 2. Ионообменная адсорбция.
- 3. Адсорбция растворенного вещества с молекулярной массой 240 г/моль на поверхности некоего адсорбента передается уравнением Ленгмюра. Вычислите емкость монослоя и его толщину, если площадь, занимаемая одной молекулой данного адсорбата на поверхности равна 0,215 нм². Плотность адсорбата примите равной 1,85 г/см³.
- 4. Определите равновесное давление паров над каплями бензола с дисперсностью 0,1 нм⁻¹ при температуре 293 К. Необходимые справочные данные возьмите в литературе.
- 7. Учебно-методическое и информационное обеспечение дисциплины (печатные, электронные издания, интернет и другие сетевые ресурсы).
 - 7.1. Перечень основной литературы:

No	Наименование согласно	Количество экземпляров		
	библиографическим требованиям	на кафедре	В	
			библиотеке	
1	Беляев А. П., Физическая и коллоидная химия: учебник. М.: ГЭОТАР-Медиа, 2009	10	124	
2	Ершов Юрий Алексеевич, Коллоидная химия. Физическая химия дисперсных систем: учебник. М.: ГЭОТАР-Медиа	10	121	

7.2. Перечень дополнительной литературы:

№	Наименование согласно	Количество экземпляров		
	библиографическим требованиям	на кафедре	В	
			библиотеке	
1	Харитонов Ю.Я. Физическая химия.	2	2	
	Учебник. – М.:ГЭОТАР-Медиа, 2009. – с.			
	608			
2	Задачи по физической химии: учебное	1	1	
	пособие/ В.В.Еремин, С.И.Каргов,			
	И.А.Успенская, Н.Е.Кузьменко,			
	В.В.Лунин. – М.:Экзамен, 2003. – с.320			
3	Зимон А.Д. Коллоидная химия. – М.: Агар,	2	1	
	2003 c.320			

7.3. Перечень методических рекомендаций для аудиторной и самостоятельной работы студентов:

No	Количество экземпляров
----	------------------------

	Наименование согласно библиографическим требованиям	на кафедре	в библиотеке
1	Гордецов А. С., Практикум по физической и коллоидной химии: учебно- методическое пособие для студентов фарм. факуль. Н.Новгород: НижГМА, 2009	10	194

- 8. Материально-техническое обеспечение дисциплины.
- **8.1.** Перечень помещений, необходимых для проведения аудиторных занятий по дисциплине.

№	наименования помещений (в указанном порядке)	учебных мест,	площадь, м 2
Π/Π		шт.	
1.	потоковая лекционная аудитория (на каф.химии)	100	
2.	потоковая лекционная аудитория (на	150	
	каф.анатомии)		
3.	учебная лаборатория для проведения химического	20	
	практикума №18		

8.2. Перечень оборудования, необходимого для проведения аудиторных занятий по дисциплине.

Использование учебных химических аудиторий, оснащенных лабораторными столами, аналитическими весами, моделями, приборами для измерения физико- химических характеристик, наборами химической посуды, реактивами и оборудованных химических лабораторий для выполнения студентами учебно-практических работ, предусмотренных в лабораторном практикуме Компьютерная техника (компьютеры, ноутбуки, проектор, экран). Проекционная техника (проектор «Оверхед», телевизор) Наборы слайдов и таблиц по различным разделам дисциплины, мультимедийные презентации.

8. Образовательные технологии в интерактивной форме, используемые в процессе преподавания дисциплины

1. Традиционные образовательные технологии

<u>Информационная лекция</u> — последовательное изложение материала в дисциплинарной логике, осуществляемое преимущественно вербальными средствами (монолог преподавателя).

<u>Практическое занятие</u>, посвященное освоению конкретных умений и навыков по предложенному алгоритму.

<u>Лабораторная работа</u> — организация учебной работы с реальными материальными и информационными объектами, экспериментальная работа с аналоговыми моделями реальных объектов.

2. Технологии проблемного обучения

<u>Проблемная лекция</u> — изложение материала, предполагающее постановку проблемных и дискуссионных вопросов, освещение различных научных подходов, авторские комментарии, связанные с различными моделями интерпретации изучаемого материала.

работы, направленная на решение комплексной учебно-познавательной задачи, требующей от студента применения как научно-теоретических знаний, так и практических навыков.

Всего 50% интерактивных занятий от объема аудиторной работы.

9.1. Примеры образовательных технологий в интерактивной форме: Написание и защита рефератов.

Темы рефератов и докладов

- 1. Особенности искривленной поверхности раздела фаз.
- 2. Термодинамические основы адгезии.
- 3. Использование уравнений Генри, Фрейндлиха и Ленгмюра для описания адсорбции.
- 4. Методы определения поверхностного натяжения.
- 5. Применение хроматографии в фармации.
- **9.2.** Электронные образовательные ресурсы, используемые в процессе преподавания дисциплины:

Единый образовательный портал ФГБОУ ВО НижГМА Минздрава России.